Радиоволны направленно излучаемые антенной. Kvant. Как излучать радиоволны. Антенна волновой канал

Материал из Юнциклопедии


Радиолокация (от «радио» и латинского слова locatio - расположение) - область науки и техники, занимающаяся наблюдением различных объектов в воздухе, на воде, на земле, определением их местоположения и расстояния до них при помощи радио. Всем хорошо знакомо эхо. Мы слышим звук, когда говорим, и слышим вторично, когда он возвращается после отражения от стены здания или утеса. В радиолокации происходит то же самое, но с той только разницей, что вместо звуковых волн действуют радиоволны. Радиолокатор посылает импульс радиоволн в сторону объекта и принимает его после отражения. Зная скорость распространения радиоволн и время прохождения импульса до отражающего объекта и обратно, нетрудно определить расстояние между ними.

Любой радиолокатор состоит из радиопередатчика, радиоприемника, работающего на той же волне, направленной антенны и индикаторного устройства (см. Индикатор).

Передатчик радиолокатора посылает в антенну сигналы короткими очередями - импульсами. Антенна радиолокатора, обычно имеющая форму вогнутого прожекторного зеркала, фокусирует радиоволны в узкий луч и направляет его на объект (рис. 1). Она может вращаться и изменять угол наклона, посылая радиоволны в различных направлениях. Одна и та же антенна попеременно автоматически с частотой импульсов подключается то к радиопередатчику, то к радиоприемнику (рис. 2). В промежутках между излучениями импульсов радиопередатчика работает радиоприемник. Он принимает отраженные радиоволны, а включенное на его выходе индикаторное устройство показывает расстояние до объекта.

Роль индикаторного устройства выполняет электроннолучевая трубка (см. Кинескоп). Электронный луч перемещается по экрану трубки с точно заданной скоростью, создавая движущуюся светящуюся линию. В момент посылки радиопередатчиком импульса радиоволн светящаяся линия на экране трубки делает всплеск. Аналогичный всплеск на светящейся линии трубки появляется и по возвращении «радиоэха». Поскольку скорость распространения радиоволн известна - она равна скорости света (300 000 км/с), то по интервалу между всплесками электронного луча на экране трубки можно определить расстояние до объекта. Радиоволны отражаются землей, водой, деревьями, металлическими и другими предметами. Наилучшее отражение происходит тогда, когда длина излучаемых радиоволн меньше отражающего их предмета. Поэтому радиолокаторы работают в диапазоне ультракоротких волн (см. Радио).

Радиолокаторы, установленные на судах, позволяют получить картину береговой линии, «прощупать» водные просторы, они предупреждают о приближении других судов и плавающих ледяных гор - айсбергов. По сигналам на экранах радиолокаторов диспетчеры аэропортов (см. Диспетчерское управление) контролируют движение самолетов по воздушным трассам, а пилоты точно определяют высоту полета и наблюдают очертания местности, над которой они летят (см. Навигационные приборы). Используя радиолокационные средства, синоптики следят за образованием и передвижением облаков, развитием и прохождением ураганов и тайфунов (см. Метеорологическая техника).

Во время Великой Отечественной войны радиолокация помогала нашим воинам своевременно обнаруживать вражеские самолеты и корабли и наносить по ним сокрушающие удары. Сейчас она - верный страж границ нашей Родины.

Радиолокация является средством обнаружения и определения местоположения различных объектов в воздухе, на воде, на земле, в космосе при помощи радиоволн. Она основана на свойстве радиоволн отражаться от предметов, встречающихся на их пути. Это явление было открыто немецким ученым Г. Герцем. Отражение волн от больших объектов наблюдал изобретатель радио А. С. Попов еще в 1897 г. во время опытов по радиосвязи на Балтийском море. Однако бурное развитие радиолокации началось лишь в период Великой Отечественной войны.

В чем сущность радиолокации?

Ты, конечно, знаешь, что эхо - явление отражения звука. Его можно наблюдать в больших пустых аудиториях, в горах. Оно может быть использовано для определения расстояния до предмета, препятствия. Вот конкретный, близкий тебе пример. Ты отправился с товарищами в поход. На вашем пути оказалось ущелье, а за ним - почти отвесная скала. Можно ли, не сходя с места, определить расстояние до скалы? Можно! Для этого надо только иметь точный секундомер. Крикни громко и отрывисто. Через некоторое время ты услышишь отголосок созданного тобой звука.

Это звуковое эхо. Короткая очередь звуковых волн долетела до скалы, отразилась от нее и вернулась к тебе. Допустим, что время, которое прошло с момента выкрика до момента прихода эха, оказалось равным 6 с. Звуковые волны распространяются в воздухе со скоростью . За 6 с они прошли путь от тебя до скалы и обратно. Длина этого пути . Значит, расстояние до скалы .

Явление эха используется также для измерения глубин морей и океанов. Для этого существуют специальные аппараты-эхолоты. В днище корпуса судна укреплены излучатель мощных ультразвуковых волн, имеющий направленное действие, и устройство для приема этих волн после отражения их от морского дна (рис. 410). Излучатель включают на очень короткие промежутки времени. Возбужденный им импульс волн ультразвуковой частоты пронизывает толщу воды и, отразившись от дна, возвращается к приемному устройству. Скорость распространения ультразвуковых волн в воде известна: она равна - почти в 5 раз больше, чем в воздухе. Если эту скорость, выраженную в метрах, умножить на время между моментами излучения и приема отраженного сигнала, а произведение разделить на 2, то результат и будет глубиной моря в метрах.

Рис. 410. Измерение глубины моря с помощью эхолота

Так, например, если эхолот зарегистрировал время прохождения сигнала 0,8 с, то глубина моря в этом месте равна .

В природе есть живые существа, которые при своем движении пользуются явлением отражения волн. Это, например, летучие мыши. Летучую мышь можно пустить в совершенно темную комнату с веревочной паутиной, и она, летая в комнате, ни разу не натолкнется на веревку. Природа наградила летучую мышь чувствительным органом приема ультразвуковых волн, излучателем которых является она сама. Если на пути полета мыши имеется какой-то предмет, то он отразит излучаемые ею волны, что явится для нее сигналом о препятствии - надо повернуть. Если чувствительный орган мыши не улавливает отраженные волны, значит, впереди препятствия нет - можно продолжать путь в том же направлении.

Радиоволны отражаются и рассеиваются различными предметами в разные стороны. Отраженные радиоволны - это радиоэхо. Они могут быть уловлены радиоприемником. Зная скорость распространения и время прохождения импульса радиоволн от его источника до отраженного предмета и обратно, нетрудно определить длину его пути. На этом и основана радиолокация.

Любая радиолокационная станция, называемая также радиолокатором, или сокращенно РЛС, содержит радиопередатчик, радиоприемник, антенну и индикаторы, позволяющие обнаруживать цели и определять их текущие координаты. Передатчик, работающий на постоянной частоте, излучает в пространство радиоволны. Если на их пути встречается какое-то препятствие, например самолет, оно отражает и рассеивает радиоволны во все стороны, в том числе и в сторону РЛС. Чувствительный приемник, настроенный на частоту передатчика, принимает отраженные волны, а включенный на его выходе индикатор дальности показывает расстояние до предмета.

Но мало знать, что отражающий радиоволны самолет находится на таком-то расстоянии. Надо знать еще и направление. Чтобы определить, в каком месте находится данный предмет, антенна РЛС должна посылать радиоволны не во все стороны, как радиовещательная станция, а направленным, сравнительно узким пучком, подобным световому лучу прожектора.

В этом случае приемник радиолокатора зафиксирует сигналы, отраженные только тем самолетом, который находится в направлении излучения радиоволн.

Наилучшее отражение радиоволн происходит, когда их длина соизмерима с размерами предмета. Поэтому радиолокаторы работают на метровых, дециметровых, сантиметровых и миллиметровых волнах, т. е. на частотах свыше 600 МГц. Энергию радиоволн таких длин, кроме того, легче концентрировать в узкий пучок, что имеет немаловажное значение для «дальнобойности» радиолокатора и точности определения места нахождения того или иного объекта.

Каким же образом радиолокатор обнаруживает объект, если он излучает энергию радиоволн узким направленным пучком? Антенна его передатчика может вращаться, а также изменять угол наклона, посылая волны в различных направлениях. Она же является и приемной антенной.

Наиболее простая антенна РЛС, работающая в метровом диапазоне, показана схематически на рис. 411, а. Принципиально она имеет такую же конструкцию, как многоэлементные телевизионные приемные антенны, только снабжена еще механизмом вращения и наклона. Длина вибратора равна приблизительно половине длины излучаемой волны. Ток высокой частоты подводится к активному вибратору. Такая антенна посылает радиоволны довольно узким направленным пучком в сторону директоров.

Рис. 411. Антенны направленного излучения и приема

Она же и принимает отраженные сигналы, которые идут со стороны директоров.

Другая конструкция антенны наземной РЛС метрового диапазона показана на рис. 411,б. Она имеет большое число излучаемых вибраторов, расположенных в одной плоскости. Металлическая конструкция, на которой смонтированы вибраторы, выполняет роль рефлектора антенны. Чем короче радиоволна станции, тем меньше размеры излучаемого вибратора и рефлектора и общие размеры антенны. Так, например, рефлекторная антенна станции миллиметрового диапазона может иметь размеры, не превышающие размеров тарелки.

Передатчики РЛС работают, как правило, в импульсном режиме; импульсами излучают радиоволны и их антенны. При импульсном режиме передатчик в течение очень короткого промежутка времени создает «очередь» радиоволн, после чего наступает сравнительно продолжительный перерыв - пауза, в течение которой он «отдыхает». Во время перерыва происходит прием отраженных волн. Затем снова излучается такой же импульс, за ним опять следует пауза и т. д. При таком режиме антенна передатчика как бы «стреляет» в пространство короткими очередями радиоволн.

Допустим, что каждый импульс РЛС длится и за каждую секунду излучается 500 таких очередей радиоволн. Следовательно, паузы между импульсами равны т.е. почти в 200 раз продолжительнее, чем импульсы.

Получается, что передатчик за сутки в общей сложности работает всего не больше нескольких минут. А мощность импульса достигает десятков, сотен и даже тысяч киловатт. Она во много раз больше мощности, потребляемой радиолокатором от источника питания. Объясняется это тем, что во время паузы в передатчике накапливается электрическая энергия, которая затем в течение очень короткого промежутка времени преобразуется в колебания радиочастоты и излучается антенной.

Расстояние до объекта определяют, как я уже говорил, временем между моментом посылки импульса и возвращением «радиоэха». Радиоволны распространяются со скоростью (точнее, . Это значит, что от самолета, находящегося, например, на расстоянии 150 км, радиоэхо вернется через 0,001 с, а при расстоянии до него 300 км - через 0,002 с. Для измерения таких коротких промежутков времени не годятся даже самые лучшие секундомеры, ибо неточность в отсчете времени даже дает ошибку, равную десяткам километров.

В РЛС отсчет времени ведется при помощи электронного секундомера, роль которого обычно выполняет электронно-лучевая трубка. В простейшем виде она, подобно трубке осциллографа, представляет собой стеклянный баллон с электродами и сильным разрежением воздуха внутри (рис. 412,а).

Рис. 412. Устройство и принцип действия электронно-лучевой трубки

Экраном служит плоская широкая часть трубки, покрытая с внутренней стороны тонким слоем люминофора полупрозрачного вещества, светящегося под ударами электронов. Катод электронно-лучевой трубки подобен подогревному катоду электронной лампы. Он окружен металлическим цилиндром с небольшим отверстием посередине, через которое вылетают излучаемые катодом электроны. Это управляющий электрод трубки. Неподалеку от него расположен первый анод, имеющий форму полого цилиндра. На него относительно катода подается положительное напряжение, под действием которог о электроны, излучаемые катодом, получают ускорение. За первым анодом находится второй. Это может быть полый цилиндр или токопроводящее покрытие, нанесенное на внутреннюю поверхность горловины трубки. На него подается еще более высокое положительное напряжение, чем на первый анод. Электроны, пролетая его, приобретают еще большую скорость движения к экрану. Напряжения на электродах трубки подбирают так, что между ними образуется электрическое поле, обладающее свойством собирать электроны, летящие к экрану, в узкий пучок - луч.

Под действием ударов электронов люминофор светится - на экране появляется светящаяся точка (рис. 412,б). Она тем ярче, чем больше электронов в луче и чем больше их скорость. Управляющий электрод изменяет плотность электронного луча и, следовательно, яркость светящейся точки на экране.

Всю систему, состоящую из катода, управляющего электрода и анодов, называют электронным прожектором электронно-лучевой трубки.

Между анодами и экраном трубки размещены еще четыре пластины, носящие название отклоняющих. Они образуют два плоских конденсатора, электрические поля которых перпендикулярны друг другу. Подавая напряжение на пару вертикально расположенных пластин, электронный луч можно отклонить влево или вправо и таким образом перемещать светящуюся точку на экране по горизонтали. Это пластины горизонтального отклонения луча. Вторая пара пластин, расположенных горизонтально, образует конденсатор, позволяющий электронный луч и светящуюся точку на экране перемещать по вертикали. Это - пластины вертикального отклонения луча.

Используя электронно-лучевую трубку в качестве электронного секундомера, на ее пластины горизонтального отклонения луча подают от специального генератора переменное напряжение пилообразной формы (рис. 412, в), называемое напряжением горизонтальной развертки . От обычного синусоидального напряжения пилообразное отличается главным образом тем, что оно уменьшается значительно быстрее, чем возрастает, причем изменение напряжения происходит не по кривым, а по прямым линиям. При этом электронный луч чертит на экране трубки прямую горизонтальную светящуюся линию (рис. -линию горизонтальной развертки. Она-то и выполняет роль шкалы такого прибора радиолокатора. Если на пластины вертикального отклонения луча подать импульс отраженного сигнала, он вызовет на этой шкале отметку в виде всплеска.

На пластины горизонтального отклонения луча прибора подают пилообразное напряжение развертки той же частоты, с которой происходит излучение зондирующих пачек радиоволн, например 1000 Гц. При такой частоте электронный луч 1000 раз в 1 с прочеркивает экран, образуя на нем прямую светящуюся линию. Общая длина линии на экране при этом соответствует в масштабе отрезку времени длительностью 0,001 с, т. е. . Она может быть отградуирована в километрах.

Луч на экране трубки начинает двигаться слева направо от нулевого деления шкалы в тот момент, когда происходит излучение импульса. Момент посылки импульса отмечается выбросом линии у нулевого деления шкалы трубки. Пластины вертикального отклонения луча трубки включены на выходе приемника. Если в приемник не поступают отраженные импульсы, то остальная часть линии развертки на экране трубки имеет вид прямой. Но как только начинают поступать отраженные импульсы, на светящейся линии получается второй выброс. Для случая, показанного на рис. 413, видно, что расстояние до объекта, отразившего радиоволны, 70 км.

Как операторы РЛС определяют текущие координаты обнаруженного объекта, например самолета? По его азимуту, т. е. по углу между направлением на север и направлением на самолет, и по углу места - углу, образуемому горизонтальной линией и наклонной линией, направленной на самолет (рис. 414). Эти данные фиксируют индикаторы по положению антенны. А когда известны азимут, угол места и наклонная дальность, то нетрудно рассчитать высоту полета и место, где в данный момент находится обнаруженный самолет. В РЛС все эти расчеты производятся, разумеется, автоматически.

Рис. 413. Выброс светящейся линии на экране электронно-лучевой трубки указывает расстояние до цели

Рис. 414. Определение направления и высоты полета самолета

Рис. 415. Структурная схема радиолокационной станции

Рис. 416. Индикатор кругового обзора

Очевидно, что если РЛС находится на земле или установлена на корабле и предназначена для наблюдения за наземными или плавающими по воде кораблями, нет необходимости измерять угол места.

Чтобы ты имел более полное представление о РЛС, разберем ее работу по упрощенной структурной схеме, изображенной на рис. 415. На ней показаны только основные устройства и их взаимосвязь.

Антенна, излучающая импульсы радиоволн и принимающая отраженные радиоволны, обладает острой направленностью. При помощи электродвигателей она, нащупывая цель, может вращаться вокруг своей оси и изменять угол наклона. С механизмом вращения и наклона антенны связаны приборы, показывающие азимут и угол места самолета, на который в данный момент она направлена. Генератор передатчика и приемник имеют с антенной не прямую связь, а через переключатель, роль которого выполняют электронные приборы. Во время посылки импульсов радиоволн антенна подключена к передатчику, а во время пауз - к приемнику. Принятые отраженные сигналы после усиления и детектирования подаются на электронно-лучевую трубку указателя дальности. Горизонтальное движение луча этой трубки осуществляется пилообразным напряжением генератора развертки. Новым для тебя на этой схеме является хронизатор-устройство, согласующее работу генератора передатчика, антенного переключателя и генератора развертки трубки дальномера. Через строго определенные промежутки времени он вырабатывает пусковые импульсы, действующие на генераторы развертки электронно-лучевой трубки. Хронизатор обеспечивает слаженность работы всех приборов и устройств РЛС.

Современные РЛС имеют, как правило, не три, как на структурной схеме, а два основных электронных индикатора: индикатор кругового обзора и индикатор высоты цели. Электронно-лучевая трубка индикатора кругового обзора (рис. 416) имеет радиальную развертку, светящаяся линия которой перемещается по кругу синхронно с вращением антенны. На обрамление экрана трубки нанесены метки градусов азимутальной шкалы. На самом экране электронным методом создают концентрические масштабные отметки наклонной дальности (на рис. 416 - через 50 км).

На экране такого индикатора фиксируются все объекты, находящиеся в зоне действия, видны их азимуты и Наклоны дальности. Например, для случая, показанного на рис. 416, азимут объекта а 90°, наклонная дальность , а для объекта б соответственно 230° и 375 км.

Угол места определяют по индикатору высоты цели с помощью так называемого гониометра - устройства, изменяющего диаграмму направленности антенны. Таким образом, эти два индикатора позволяют оперативно, за 10-15 с определять и следить за текущими координатами всех целей, находящихся в зоне обнаружения РЛС.

Ты вправе задать вопрос: а как же узнать, свой или чужой самолет обнаружен? На самолетах устанавливают небольшие передатчики, которые автоматически включаются при облучении их радиоволнами запросчика своей РЛС и посылают ответные опознавательные сигналы. Ответные сигналы своего самолета видны на экране индикатора кругового обзора. Если ответных сигналов нет - значит, самолет чужой.

Достаточно полное представление о РЛС тебе даст рис. 417, на котором изображена развернутая подвижная наземная РЛС, рассчитанная главным образом на обнаружение и определение координат самолетов и крылатых ракет. Все оборудование и имущество станции размещено в кузовах двух автомобилей с повышенной проходимостью.

Рис. 417. Радиолокационная станция П-10: 1 - аппаратная машина; 2 - силовая машина; 3 - антенна РЛС; 4 - антенна запросчика

В кузове одного автомобиля находятся агрегаты питания, а кузове второго - радиолокационная аппаратура. Неподалеку от них установлена антенна запросчика. При размещении такой станции на ровной площадке радиусом около дальность обнаружения самолетов - бомбардировщиков, летящих на высоте , достигает 180-200 км.

Конструкция, габаритные размеры и «профессия» PЛC весьма разнообразны. Сейчас трудно назвать род Вооруженных Сил, где бы в той или иной степени не использовалась радиолокационная аппаратура. Без нее невозможно наиболее эффективно использовать быстрокрылые истребители-перехватчики, зенитно-ракетные установки, самолеты-ракетоносцы, корабли различного назначения и другую военную технику.

Советская Армия и Военно-Морской Флот получают на вооружение все более совершенную технику. И чтобы она всегда была в боевой готовности, ее надо хорошо знать и в совершенстве управлять ею. Вот почему сейчас молодежь начинает изучать эту технику на учебных пунктах, на курсах радиошкол ДОСААФ еще до призыва в Вооруженные Силы нашей Родины.

В данной статье расскажем вам про радиоволны и свойства их распространения.

Многие люди, не обладая элементарными понятиями о видах энергии, их свойствах, часто рассуждают о способах беспроводной передачи энергии на расстояния. Другие, не зная, как распространяются радиоволны, изготавливают антенны к своим радиопередатчикам и радиоприемникам, пытаясь добиться максимальных характеристик передачи и приема, но у них ничего не получается. Одни читают умные книги, а другие основываются на опыте, или совете малограмотного товарища. Для того, чтобы развеять хотя бы часть заблуждений и дать представление об электромагнитных волнах и как их виде – радиоволнах посвящена эта статья.

Как обычно, я не буду расписывать формул Максвелла, Фарадея и других известных деятелей науки. Их в огромном количестве имеется в учебниках физики, читая которые, даже я – имеющий образование и опыт работы в радиоэлектронике не понимаю, почему в этих учебниках приводятся заумные формулы, а простейшая, имеющая полезное практическое значение информация отсутствует? Ведь на следующий день, или неделю после окончания школы, ученик эти формулы не вспомнит, а простых понятий, как не знал, так и знать не будет.

где: f – частота, λ – длина волны, с – скорость света, равная 300 000 км/сек.

Радиоволны подразделяются на несколько диапазонов:

Сверхдлинные «СДВ» – частотой 3 – 30 кГц, с длиной волны 100 — 10 км;

Длинные «ДВ» – частотой 30 – 300 кГц, с длиной волны 10 — 1 км;

Средние «СВ» – частотой 300 – 3000 кГц, с длиной волны 1000 — 100 метров;

Короткие «КВ» – частотой 3 – 30 МГц, с длиной волны 100 — 10 метров;

Ультракороткие «УКВ» , включающие:

— метровые «МВ» – частотой 30 – 300 МГц, с длиной волны 10 — 1 метра;

— дециметровые «ДМВ» – частотой 300 – 3000 МГц, с длиной волны 10 — 1 дм;

— сантиметровые «СМВ» – частотой 3 – 30 ГГц, с длиной волны 10 — 1 см;

— миллиметровые «ММВ» – частотой 30 – 300 ГГц, с длиной волны 10 — 1 мм;

— субмиллиметровые «СММВ» – частотой 300 – 6000 ГГц, с длиной волны 1 – 0,05 мм;

Диапазоны от дециметровых, до миллиметровых волн, из-за их очень высокой частоты называют сверхвысокими частотами «СВЧ» .

Естественно все перечисленные диапазоны радиоволн, как отечественные, так и буржуйские могут подразделяться на поддиапазоны.

Вспомните практическую важность поляризации ЭМВ — если радиопередатчик и радиоприемник настроены на одну и ту же частоту, но имеют разную поляризацию, например у передатчика вертикальная, а у приемника – горизонтальная, то радиосвязь будет плохой. К этому стоит добавить диаграмму направленности штыревой антенны, и тогда на примере двух радиотелефонов — переносных радиостанций (1 и 2) изображённых на рисунке ниже, можно сделать логическое заключение:

Если антенны радиопередатчика и радиоприемника ориентированы в пространстве относительно горизонта одинаково и диаграммы направленности антенн максимумами направлены друг на друга, то связь будет наилучшей. Если не выполняется одно из указанных условий, то связи либо не будет, либо она будет плохой.

На дальность радиосвязи также влияет ещё один параметр – толщина элементов вибратора, чем она больше, тем антенна широкополоснее – диапазон хорошо принимаемых частот шире, но уровень сигнала практически на всех частотах уменьшается. Это связано с тем, что дипольная антенна – это тот же колебательный контур, а при расширении полосы частот АЧХ резонанса, амплитуда резонанса уменьшается. Поэтому не удивляйтесь, что телевизионная антенна, сделанная из пивных алюминиевых банок в городе, где уровень сигнала телевизионной вышки большой, принимает телевизионный сигнал разных каналов не хуже, а зачастую лучше сложной профессиональной антенны.

Хорошие профессиональные радиоантенны обладают показателем – коэффициентом усиления антенны . Ведь обычный полуволновой вибратор не усиливает сигнал, его действие избирательно – на определённой частоте, в определённых направлениях и определённой поляризации. Чтобы в приемнике было меньше помех, увеличить дальность приема-передачи, одновременно при этом сузить диаграмму направленности антенны (общепринятое название — ДНА), простой полуволновой вибратор не годится. Антенну усложняют.

Ранее, я писал о влиянии различных препятствий — их отражательном свойстве. Если препятствие по своим размерам не соизмеримо (на порядок меньше) с длиной радиоволны, тогда это не является для радиосигнала препятствием, оно никак на него не влияет. Если препятствие находится в плоскости параллельной электрической волне и больше длины волны, тогда это препятствие отражает радиоволну. Если препятствие по протяженности кратно (равно четверти, половине или целой) длине волны, сориентировано параллельно электрической волне и перпендикулярно направлению распространения волны, тогда это препятствие действует как резонансный колебательный контур на целой длине волны или её гармониках, и имеет наибольшие отражательные свойства.

Именно эти описанные выше свойства и используются в сложных антеннах. Так, один из вариантов улучшения приемных свойств антенны является установка дополнительного рефлектора (отражателя), принцип действия которого основывается на отражении радиоволны и синфазного сложения двух сигналов – от телецентра (ТЦ) и от рефлектора. Диаграмма направленности при этом сужается и вытягивается. На рисунке изображена антенна, состоящая из петлевого полуволнового вибратора(1) и рефлектора(2). Длина вибратора (А) этой телевизионной антенны выбирается равной половине длины волны среднего телевизионного канала, помноженную на коэффициент укорочения. Длина рефлектора (Б) выбирается равной половине длины волны минимального телевизионного канала (с максимальной длиной волны). Расстояние между вибратором и рефлектором (С) выбирается таким, чтобы происходило синфазное сложение прямого и отражённого сигнала – половине длины волны.

Следующий способ дальнейшего усиления приемного сигнала путём сужения и вытягивания ДНА – добавление пассивного вибратора – директора . Принцип действия всё на том же синфазном сложении. Диаграмма направленности при этом ещё сильнее сужается и вытягивается. На рисунке изображена антенна «волновой канал» , состоящая из рефлектора (1), петлевого полуволнового вибратора (2) и одного директора (3). Дальнейшее добавление директоров ещё сильнее сужает и вытягивает диаграмму направленности. Длина директоров (В) выбирается чуть меньше длины активного вибратора. Для увеличения коэффициента усиления антенны и её широкополосности, перед активным вибратором добавляются директоры с постепенным уменьшением их длины. Обратите внимание, что длина активного вибратора равна половине средней длине волны принимаемого сигнала, длина рефлектора – больше половины длины волны, а длина директора – меньше половины длины волны. Расстояния между элементами выбирается также около половины длины волны.

В профессиональной технике часто применяется способ сужения ДНА и повышения усилительных свойств антенны – фазированная антенная решётка , в которой параллельно подключается несколько антенн (например простых диполей, или антенн типа «волновой канал»). В результате происходит сложение токов соседних каналов, и как результат – повышение мощности сигнала.

На сверхвысоких частотах в качестве вибратора антенны применяют волновод, а в качестве рефлектора применяют сплошное полотно, все точки которого равноудалены от плоскости вибратора (на одинаковом расстоянии) – параболоид вращения , или в простонародье – «тарелка». Такая антенна обладает очень узкой диаграммой направленности и высоким коэффициентом усиления антенны.

Выводы на основе распространения и сложности формирования радиоволн

Как и куда распространяются радиоволны можно рассчитать с помощью умных формул и преобразований только для идеальных условий – при отсутствии естественных препятствий. Для этого, элементы антенн, различные поверхности должны быть идеально ровные. На практике, из-за влияния многих факторов преломления и отражения, ещё ни один «учёный мозг» не смог с высокой достоверностью рассчитать распространение радиоволн в естественных природных условиях. Существуют области пространства уверенного приема и зоны радиотени – там, где прием вовсе отсутствует. Только в кино альпинисты не отвечают на вызов по радиосвязи потому, что у них заняты руки, или они сами заняты «спасением мира», на самом деле радиосвязь – дело не устойчивое и чаще альпинисты не отвечают потому, что связи просто нет – отсутствует прохождение радиоволн. Именно зависимость радиосвязи от природных явлений (дождь, низкая облачность, разряженность атмосферы и т.д.) привела к возникновению понятия «радиолюбитель» . Это сейчас понятие «радиолюбитель» – человек, который любит паять радиосхемы. Лет двадцать назад это был «связист-коротковолновик», который на изготовленном своими руками маломощном трансивере связывался с другим радиолюбителем (или по другому — радиокорреспондентом), находящимся на другой стороне Земли, за что получал «бонусы». Раньше даже проводились соревнования по радиосвязи. Нынче тоже проводятся, но с развитием техники это стало не так актуально. Среди этих радиолюбителей-связистов есть много недовольных тем, что обыкновенные «паялы», не сидящие в наушниках в поисках радиокорреспондентов для организации радиообмена, называют себя радиолюбителями.

Рафаилов А. Как излучать радиоволны? //Квант. - 1991. - № 11. - С. 33-35.

По специальной договоренности с редколлегией и редакцией журнала "Квант"

Прежде чем излучать радиоволны - электромагнитные колебания определенной частоты, нужно эти колебания получить. Это можно сделать при помощи генератора незатухающих колебаний. А вот как добиться того, чтобы о наличии колебаний можно было узнать вдали от генератора,- это и есть тема заметки.

Сформулируем задачу конкретнее: что нужно подключить к выходу генератора незатухающих колебаний, чтобы от него побежала электромагнитная волна? Вопрос этот не простой, зато можно легко догадаться, какие элементы на роль излучающей антенны явно не подходят. Вот, например, резистор. Если мы подключим его к выходу генератора, то вся энергия, которую он от генератора получит, полностью перейдет в тепло. Не подходит на роль антенны и конденсатор - средняя мощность, которую он получает от генератора, в точности равна нулю (сдвиг фаз между напряжением и током равен четверти периода). Значит, ему просто нечего излучать - ведь при излучении электромагнитных волн энергия должна передаваться от источника по всем направлениям. То же самое справедливо и для катушки индуктивности.

Таким образом, для того чтобы мощность отнималась от генератора, нужно изменить сдвиг фаз между током и напряжением - он не должен составлять четверть периода. Этого можно добиться, например, соединив последовательно конденсатор и резистор. Однако ничего полезного для нас при этом не произойдет: теперь цепь нагрузки (конденсатор и резистор) отнимает от генератора энергию, но вся эта энергия полностью переходит в тепло. Попробуйте в этом убедиться самостоятельно - для такой простой цепи это не вызовет трудностей. Оказывается, и для произвольных LCR -цепей (например, как на рисунке 1) выполняется это правило: вся мощность, которую цепь получает от источника, переходит в тепло. При этом зависимость мгновенной мощности от времени имеет вид

\(~p = u(t) \cdot i(t) = U_0 \cos \omega t \cdot I_0 \cos (\omega t + \varphi)\) ,

где φ - сдвиг фаз между током и напряжением. После простых тригонометрических преобразований легко найти среднюю мощность, потребляемую от источника за период (а значит, и за большой промежуток времени):

\(~P_{cp} = \frac 12 U_0 I_0 \cos \varphi = U I \cos \varphi\) .

Это и есть в точности мощность, переходящая в тепло.

Заметим, кстати, что максимальное значение мгновенной мощности больше значения P cp , причем при сдвигах фаз, близких к 90°,- во много раз. Это означает, что источник должен быть в состоянии развивать мгновенную мощность существенно более высокую, чем та, которую в среднем от него отнимают. Такое положение возникает часто в практической электротехнике - при подключении ламп дневного света, электродвигателей и т. п. С лампами дневного света это происходит потому, что ток через лампу задается последовательным подключением катушки индуктивности и сдвиг фаз получается близким к 90° (рис. 2). Излишняя нагрузка для электросети крайне нежелательна, так как приводит к дополнительным потерям в виде тепла и вынуждает применять провода с большим сечением. Положение можно поправить, подключив параллельно конденсатор подходящей емкости (тут нужна настройка в резонанс!). При этом катушка и конденсатор обмениваются между собой энергией во время всего периода - «лишняя» энергия перекачивается между ними, а сеть - источник поступающей в нагрузку энергии - отдает только то количество энергии, которое переходит в тепло.

Итак, цепи такого рода (LCR -цепи) не годятся на роль антенны. Проблема состоит в том, чтобы сделать сдвиг фаз между током и напряжением в цепи отличным от 90°, но не за счет выделения тепла, т. е. без резисторов. Оказывается, если размеры компонентов цепи нагрузки малы по сравнению с длиной волны, ничего нельзя сделать. А вот при больших размерах элементов нагрузки дополнительный сдвиг фаз можно получить за счет запаздывания распространения волны.

Пусть в качестве нагрузки использован конденсатор, сопротивление которого (для переменного тока заданной частоты) оптимально для данного генератора. Теперь начнем увеличивать запаздывание, изменяя габариты конденсатора. Но нельзя просто увеличить размеры пластин конденсатора - его емкость станет больше. Для сохранения емкости придется увеличить и расстояние между пластинами. Строго говоря, конденсатор больших размеров - это уже не конденсатор. Сдвиг фаз теперь соответствует другой цепи, и от генератора потребуется мощность, хотя резисторов тут нет и тепло не выделяется. Следовательно, энергия от генератора должна куда-то уходить, а именно - излучаться в пространство.

Для получения наибольшей излучаемой мощности нужно довести размеры и конфигурацию антенны до оптимума. Если такая антенна состоит, например, из двух стержней - длинных и тонких, то оптимальная длина каждого из них должна быть равна четверти длины волны, стержни нужно направить вдоль одной прямой, а выводы генератора незатухающих колебаний подключить так, как показано на рисунке 3. Такие антенны часто применяют в качестве приемных для телевизоров. В сущности приемные и передающие антенны не отличаются друг от друга (только для очень мощных передатчиков нужно делать специальные передающие антенны, с учетом высоких напряжений и больших токов, подаваемых на антенну для передачи).

Бели размеры антенны выбраны правильно, то не создается «лишней» нагрузки для генератора радиопередатчика и отнимаемая от него энергия излучается в пространство. Однако эти пожелания легко удовлетворить только для стационарных радиопередатчиков и не очень низких частот передачи (для которых не слишком велика длина волны). Для переносных радиостанций это не всегда возможно - антенна получается намного короче, чем нужно для оптимального согласования с генератором.

В таком случае можно «облегчить участь» генератора, подключив последовательно с антенной катушку индуктивности (ее так и называют - удлинительной)- емкостное сопротивление короткого антенного провода будет скомпенсировано индуктивным сопротивлением катушки. Антенна может состоять и из нескольких проводников - выбирая длину и положение этих проводников и подавая в них токи от генератора в нужных фазах, можно добиться того, чтобы излучение происходило преимущественно в заданном направлении («направленная» антенна). Это - пример использования интерференции в технических целях. Кстати, вовсе не обязательно подключать все проводники к генератору - вполне достаточным для наших целей может оказаться тот ток, который возникает в проводнике из-за того, что он находится в электромагнитном поле основной антенны. Все это относится и к приемной антенне, которая чаще всего включает основной проводник - «вибратор» (происхождение этого термина должно быть ясным) и несколько дополнительных, ни к чему не подключенных проводников строго определенных размеров и местоположения (их называют «директор» и «рефлектор», от их числа и точности подбора зависит направленность антенны).

Оказывается, можно подобрать конфигурацию сложной антенны так, чтобы она работала удовлетворительно не только на строго определенной частоте, но и в целом диапазоне частот. Это совершенно необходимо, например, для приема телевидения - ведь не очень удобно иметь для каждого канала свою антенну. Однако, если частоты каналов сильно разнесены или антенна находится очень далеко от телецентра, приходится использовать несколько отдельных, хорошо настроенных антенн.

ЧТО ТАКОЕ РАДИОВОЛНЫ

Радиоволны – это электромагнитные колебания, распространяющиеся в пространстве со скоростью света (300 000 км/сек). Кстати, свет это тоже электромагнитные волны, обладающие схожими с радиоволнами свойствами (отражение, преломление, затухание и т.п.).

Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А рождаются они при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры, т.е. ряд быстро следующих друг за другом импульсов тока.

Электромагнитное излучение характеризуется частотой, длиной волны и мощностью переносимой энергии. Частота электромагнитных волн показывает, сколько раз в секунду изменяется в излучателе направление электрического тока и, следовательно, сколько раз в секунду изменяется в каждой точке пространства величина электрического и магнитного полей. Измеряется частота в герцах (Гц) – единицах названных именем великого немецкого ученого Генриха Рудольфа Герца. 1 Гц – это одно колебание в секунду, 1 мегагерц (МГц) – миллион колебаний в секунду. Зная, что скорость движения электромагнитных волн равна скорости света, можно определить расстояние между точками пространства, где электрическое (или магнитное) поле находится в одинаковой фазе. Это расстояние называется длиной волны. Длина волны в метрах рассчитывается по формуле:

Или примерно ,
где f – частота электромагнитного излучения в МГц.

Из формулы видно, что, например, частоте 1 МГц соответствует длина волны ок. 300 м. С увеличением частоты длина волны уменьшается, с уменьшением – догадайтесь сами. В дальнейшем мы убедимся, что длина волны напрямую влияет на длину антенны для радиосвязи.

Электромагнитные волны свободно проходят через воздух или космическое пространство (вакуум). Но если на пути волн встречается металлический провод, антенна или любое другое проводящее тело, то они отдают ему свою энергию, вызывая тем самым в этом проводнике переменный электрический ток. Но не вся энергия волны поглощается проводником, часть ее отражается от его поверхности и либо уходит обратно, либо рассеивается в пространстве. Кстати, на этом основано применение электромагнитных волн в радиолокации.

Еще одним полезным свойством электромагнитных волн является их способность огибать на своем пути некоторые препятствия. Но это возможно лишь в том случае, когда размеры объекта меньше, чем длина волны, или сравнимы с ней. Например, чтобы обнаружить самолет, длина радиоволны локатора должна быть меньше его геометрических размеров (менее 10 м). Если же тело больше, чем длина волны, оно может отразить ее. Но может и не отразить. Вспомните военную технологию снижения заметности «Stealth», в рамках которой разработаны соответствующие геометрические формы, радиопоглощающие материалы и покрытия для уменьшения заметности объектов для локаторов.

Энергия, которую несут электромагнитные волны, зависит от мощности генератора (излучателя) и расстояния до него. По научному это звучит так: поток энергии, приходящийся на единицу площади, прямо пропорционален мощности излучения и обратно пропорционален квадрату расстояния до излучателя. Это значит, что дальность связи зависит от мощности передатчика, но в гораздо большей степени от расстояния до него.

РАСПРЕДЕЛЕНИЕ СПЕКТРА

Радиоволны, используемые в радиотехнике, занимают область, или более научно – спектр от 10 000 м (30 кГц) до 0.1 мм (3 000 ГГц). Это только часть обширного спектра электромагнитных волн. За радиоволнами (по убывающей длине) следуют тепловые или инфракрасные лучи. После них идет узкий участок волн видимого света, далее – спектр ультрафиолетовых, рентгеновских и гамма лучей – все это электромагнитные колебания одной природы, отличающиеся только длиной волны и, следовательно, частотой.

Хотя весь спектр разбит на области, границы между ними намечены условно. Области следуют непрерывно одна за другой, переходят одна в другую, а в некоторых случаях перекрываются.

Международными соглашениями весь спектр радиоволн, применяемых в радиосвязи, разбит на диапазоны:

Диапазон
частот

Наименование диапазона частот

Наименование
диапазона волн

Длина волны

Очень низкие частоты (ОНЧ)

Мириаметровые

Низкие частоты (НЧ)

Километровые

300–3000 кГц

Средние частоты (СЧ)

Гектометровые

Высокие частоты (ВЧ)

Декаметровые

Очень высокие частоты (ОВЧ)

Метровые

300–3000 МГц

Ультравысокие частоты (УВЧ)

Дециметровые

Сверхвысокие частоты (СВЧ)

Сантиметровые

Крайневысокие частоты (КВЧ)

Миллиметровые

300–3000 ГГц

Гипервысокие частоты (ГВЧ)

Децимиллиметровые

Но эти диапазоны весьма обширны и, в свою очередь, разбиты на участки, куда входят так называемые радиовещательные и телевизионные диапазоны, диапазоны для наземной и авиационной, космической и морской связи, для передачи данных и медицины, для радиолокации и радионавигации и т.д. Каждой радиослужбе выделен свой участок диапазона или фиксированные частоты.


Распределение спектра между различными службами.

Эта разбивка довольно запутана, поэтому многие службы используют свою «внутреннюю» терминологию. Обычно при обозначении диапазонов выделенных для наземной подвижной связи используются следующие названия:

Диапазон частот

Пояснения

Из-за особенностей распространения в основном применяется для дальней связи.

25.6–30.1 МГц

Гражданский диапазон, в котором могут пользоваться связью частные лица. В разных странах на этом участке выделено от 40 до 80 фиксированных частот (каналов).

Диапазон подвижной наземной связи. Непонятно почему, но в русском языке не нашлось термина, определяющего данный диапазон.

136–174 МГц

Наиболее распространенный диапазон подвижной наземной связи.

400–512 МГц

Диапазон подвижной наземной связи. Иногда не выделяют этот участок в отдельный диапазон, а говорят УКВ, подразумевая полосу частот от 136 до 512 МГц.

806–825 и
851–870 МГц

Традиционный «американский» диапазон; широко используется подвижной связью в США. У нас не получил особого распространения.

Не надо путать официальные наименования диапазонов частот с названиями участков, выделенных для различных служб. Стоит отметить, что основные мировые производители оборудования для подвижной наземной связи выпускают модели, рассчитанные на работу в пределах именно этих участков.

В дальнейшем мы будем говорить о свойствах радиоволн применительно к их использованию в наземной подвижной радиосвязи.

КАК РАСПРОСТРАНЯЮТСЯ РАДИОВОЛНЫ

Радиоволны излучаются через антенну в пространство и распространяются в виде энергии электромагнитного поля. И хотя природа радиоволн одинакова, их способность к распространению сильно зависит от длины волны.

Земля для радиоволн представляет проводник электричества (хотя и не очень хороший). Проходя над поверхностью земли, радиоволны постепенно ослабевают. Это связано с тем, что электромагнитные волны возбуждают в поверхности земли электротоки, на что и тратится часть энергии. Т.е. энергия поглощается землей, причем тем больше, чем короче длина волна (выше частота).

Кроме того, энергия волны ослабевает еще и потому, что излучение распространяется во все стороны пространства и, следовательно, чем дальше от передатчика находится приемник, тем меньшее количество энергии приходится на единицу площади и тем меньше ее попадает в антенну.

Передачи длинноволновых вещательных станций можно принимать на расстоянии до нескольких тысяч километров, причем уровень сигнала уменьшается плавно, без скачков. Средневолновые станции слышны в пределах тысячи километров. Что же касается коротких волн, то их энергия резко убывает по мере удаления от передатчика. Этим объясняется тот факт, что на заре развития радио для связи в основном применялись волны от 1 до 30 км. Волны короче 100 метров вообще считались непригодными для дальней связи.

Однако дальнейшие исследования коротких и ультракоротких волн показали, что они быстро затухают, когда идут у поверхности Земли. При направлении излучения вверх, короткие волны возвращаются обратно.

Еще в 1902 английский математик Оливер Хевисайд (Oliver Heaviside) и американский инженер-электрик Артур Эдвин Кеннелли (Arthur Edwin Kennelly) практически одновременно предсказали, что над Землей существует ионизированный слой воздуха – естественное зеркало, отражающее электромагнитные волны. Этот слой был назван ионосферой.

Ионосфера Земли должна была позволить увеличить дальность распространения радиоволн на расстояния, превышающие прямую видимость. Экспериментально это предположение было доказано в 1923. Радиочастотные импульсы передавались вертикально вверх и принимались вернувшиеся сигналы. Измерения времени между посылкой и приемом импульсов позволили определить высоту и количество слоев отражения.


Распространение длинных и коротких волн.

Отразившись от ионосферы, короткие волны возвращаются к Земле, оставив под собой сотни километров «мертвой зоны». Пропутешествовав к ионосфере и обратно, волна не «успокаивается», а отражается от поверхности Земли и вновь устремляется к ионосфере, где опять отражается и т. д. Так, многократно отражаясь, радиоволна может несколько раз обогнуть земной шар.

Установлено, что высота отражения зависит в первую очередь от длины волны. Чем короче волна, тем на большей высоте происходит ее отражение и, следовательно, больше «мертвая зона». Эта зависимость верна лишь для коротковолновой части спектра (примерно до 25–30 МГц). Для более коротких волн ионосфера прозрачна. Волны пронизывают ее насквозь и уходят в космическое пространство.

Из рисунка видно, что отражение зависит не только от частоты, но и от времени суток. Это связано с тем, что ионосфера ионизируется солнечным излучением и с наступлением темноты постепенно теряет свою отражательную способность. Степень ионизации также зависит от солнечной активности, которая меняется в течение года и из года в год по семилетнему циклу.


Отражательные слои ионосферы и распространение коротких волн в зависимости от частоты и времени суток.

Радиоволны УКВ диапазона по свойствам в большей степени напоминают световые лучи. Они практически не отражаются от ионосферы, очень незначительно огибают земную поверхность и распространяются в пределах прямой видимости. Поэтому дальность действия ультракоротких волн невелика. Но в этом есть определенное преимущество для радиосвязи. Поскольку в диапазоне УКВ волны распространяются в пределах прямой видимости, то можно располагать радиостанции на расстоянии 150–200 км друг от друга без взаимного влияния. А это позволяет многократно использовать одну и ту же частоту соседним станциям.


Распространение коротких и ультракоротких волн.

Свойства радиоволн диапазонов ДЦВ и 800 МГц еще более близки к световым лучам и потому обладают еще одним интересным и важным свойством. Вспомним, как устроен фонарик. Свет от лампочки, расположенной в фокусе рефлектора, собирается в узкий пучок лучей, который можно послать в любом направлении. Примерно то же самое можно проделать и с высокочастотными радиоволнами. Можно их собирать зеркалами-антеннами и посылать узкими пучками. Для низкочастотных волн такую антенну построить невозможно, так как слишком велики были бы ее размеры (диаметр зеркала должен быть намного больше, чем длина волны).

Возможность направленного излучения волн позволяет повысить эффективность системы связи. Связано это с тем, что узкий луч обеспечивает меньшее рассеивание энергии в побочных направлениях, что позволяет применять менее мощные передатчики для достижения заданной дальности связи. Направленное излучение создает меньше помех другим системам связи, находящимся не в створе луча.

При приеме радиоволн также могут использоваться достоинства направленного излучения. Например, многие знакомы с параболическими спутниковыми антеннами, фокусирующими излучение спутникового передатчика в точку, где установлен приемный датчик. Применение направленных приемных антенн в радиоастрономии позволило сделать множество фундаментальных научных открытий. Возможность фокусирования высокочастотных радиоволн обеспечила их широкое применение в радиолокации, радиорелейной связи, спутниковом вещании, беспроводной передаче данных и т.п.


Параболическая направленная спутниковая антенна (фото с сайта ru.wikipedia.org).

Необходимо отметить, что с уменьшением длины волны возрастает затухание и поглощение энергии в атмосфере. В частности на распространение волн короче 1 см начинают влиять такие явления как туман, дождь, облака, которые могут стать серьезной помехой, ограничивающей дальность связи.

Мы выяснили, что радиоволны обладают различными свойствами распространения в зависимости от длины волны и каждый участок радиоспектра применяется там, где лучше всего используются его преимущества.